2010 Military Health System Conference

Variations in Healthcare: Preliminary Findings

Part 1 – Developing a repeatable method of inquiry and improvement for the MHS

Michael Dinneen MD PhD, OASD/Health Affairs Bob Kelley MS, Thomson Reuters January 25, 2010

The Cost Conundrum – Is it possible to improve quality and reduce costs

- One way is to follow evidence based guidelines to avoid unnecessary or dangerous tests or procedures
 - Supports the quadruple aim
- Need to identify areas of focus for our population
 - Start with cost drivers

Medical Cost Per Equivalent Life Per Month (PMPM)

	FY05	FY06	FY07	FY08	FY08	FY08	FY08	FY08	FY09	FY09	FY09	FY09
	YTD	YTD	YTD	Q1	Q2	Q3	Q4	YTD	Q1	Q2	Q3	YTD
Army	221	241	249	268	278	283	289	279	303	315	320	312
Navy	219	231	249	265	275	283	283	277	302	311	309	307
Air Force	211	227	236	246	254	257	263	255	286	301	305	297
MCSC: Network/PCN	1 189	202	214	218	229	228	230	226	232	247	241	240
MHS Total	209	224	234	245	255	257	261	255	273	287	286	282

Data Source: M2 (SIDR/SADR/HCSR-I/HCSR-NI,PDTS); EASIV; Enrollees are adjusted for Age/Gender/Bencat Current as of Oct 09, with measure reported through Jun 09. (Portions of value are projected due to missing expense data from MTFs.)

Analysis of the contributors to an increase in outpatient PMPM expenses

- From 2005 to 2008 the expense per enrollee per year increased by \$317 for non-AD enrollees.
- \$68 of that increase, or 21.5% of the total OP increase was caused by an increase in treatment for orthopedic related conditions
- As a rough calculation, if this applied to all enrollees then it would represent a total increase of \$68 X 5,000,000 = 340,000,000 over three years or \$113,000,000 per year in MHS expenses
- If there was a way to reduce unnecessary treatment while ensuring that the right treatment was delivered to those in need, we could save real dollars and improve outcomes

Note: MDCs and Product Line cannot be combined.

Top 25 Primary Diagnosis for Orthopedic Related Conditions Based on Total Visits

Visits								
		2005			2008			
MDC Diagnosis Description]	C SADR	TED-Vst	Total Vst	DC SADR	TED-Vst	Total Vst	Change 05/08
8 7242 LUMBAGO		81,650	187,511	269,161	85,820	350,562	436,382	167,221
8 71946 PAIN IN JOINT INVOLVING	G LOWER LEG	53,814	124,875	178,689	60,957	226,456	287,413	108,724
8 7231 CERVICALGIA		29,079	96,907	125,986	36,229	190,947	227,176	101,190
8 71941 PAIN IN JOINT INVOLVING	S SHOULDER REGION	30,870	127,100	157,970	35,465	218,443	253,908	95,938
8 71945 PAIN IN JOINT INVOLVING	PELVIC REGION AND THIGH	13,043	32,438	45,481	15,335	64,044	79,379	33,898
8 72610 DISORDERS OF BURSAE	AND TENDONS IN SHOULDER REGION, UNSPECIFI	9,390	22,761	32,151	11,311	50,690	62,001	29,850
8 7244 THORACIC OR LUMBOSAC	RAL NEURITIS OR RADICULITIS, UNSPECIFIED	7,028	25,635	32,663	9,687	47,709	57,396	24,733
8 71947 PAIN IN JOINT INVOLVING	Z ANKI E AND EOOT	16 /17	20 111	<i>1</i> 5 261	15 1/10	54,624	69,773	23,912
8 7243 SCIATICA	Lumbago, or non-s	nac	ific	IOW/	Ωr	38,247	49,461	22,025
	Lumbago, or non-3	pec	IIIC	IOVV	CI	38,363	55,961	19,461
8 7241 PAIN IN THORACIC SPINE	back pain was the i	$m \wedge c$	t cc	mn	aan	25,333	34,853	15,270
	back pailt was the i	1103		וווווע	1011	70,650	114,072	13,473
8 7291 MYALGIA AND MYOSITIS,	diagnosis and had	tho	ara	ato	ct	34,779	52,040	12,772
	diagnosis, and had	uie	gre	tale	5 l	31,392	54,883	12,633
8 7245 BACKACHE, UNSPECIFIE	increase from 2005	to	200	0		54,753	83,383	11,039
	increase from 2005	io .	200	ю,		18,978	35,080	10,954
8 72252 DEGENERATION OF LUI	accounting for 126	$\Delta \Delta C$	\ \ \id	ita i	'n	31,588	38,224	•
8 8449 SPRAIN OF UNSPECIFIED	accounting for 436,	UUL	VIS	SILS I	П	19,464	30,967	8,949
8 72632 LATERAL EPICONDYLITI	2000					21,019	31,451	8,095
8 72210 DISPLACEMENT OF LUN	2008					24,917	30,584	7,100
8 8472 LUMBAR SPRAIN		0,002	20,010	20,010	1,100	29,536	37,004	7,026
8 7140 RHEUMATOID ARTHRITIS	- CORPAIN	12,783	13,779	26,562	11,264	21,578	32,842	6,280
8 8404 ROTATOR CUFF (CAPSULE		3,472	21,779	25,251	2,384	28,246	30,630	5,379
	HOULDER REGION, NOT ELSEWHERE CLASSIFIED	6,221	20,523	26,744	4,083	24,935	29,018	2,274
8 8470 NECK SPRAIN		13,746	35,697	49,443	12,359	36,942	49,301	-142

^{*}Total Visits is based on DC Encounters and TED Visits for FY05/08 combined.

Is there unwarranted variation in the treatment of low back pain in the MHS

- If so, there may be an opportunity for improvement
- We need a new methodology to identify and quantify unwarranted variation
- That methodology is known as episode based analysis

Unwarranted Variation in Health Care Delivery

- Variations among communities well known
 - e.g., Dartmouth Atlas or Health Care and dartmouthatlas.org
- See Wennberg Presentation Tuesday morning

Unwarranted Variation in Health Care Delivery

- Wennberg suggests three categories of variation not explained by illness, medical evidence or patient preferences:
 - Effective Care: Evidence-based Care
 - Preference-Sensitive Care
 - Supply-Sensitive Care

Low Back Variation Study

- Preliminary study to examine diagnosis and treatment variations for low back pain relative to evidence-based guidelines
- Background
 - Episodes of care created using the Medical Episode Grouper (MEG)
 - Direct care encounters and purchased care visits during 2007
 - Continuously enrolled during 2007

Low Back Variation Study

- Background continued
 - Excludes: Overseas regions, Eligibles 65 years and older and Guard/Reserve.
 - Qualified episodes
 - Disc disorders substantiated by one hospitalization or two visits separated by seven days
 - Nonspecific pain requires one face-to-face visit

Low Back Variation Study

- Regions studied
 - 46 regions with MHS eligible populations over 30,000 profiled using these criteria representing 2.3 million MHS Eligibles

Demographic Characteristics of the Study Sample

- Included 173,940 episodes
 - 70,684 Army (41%)
 - 46,313 Air Force (27%)
 - 13,912 Marine Corps (8%)
 - 39,845 Navy (23%)
 - 3,186 Other (2%)
- The majority of patients were:
 - 45 years old or younger (60%)
 - Female (51%)
 - Active duty enrollees & dependents (52%)

Episodes of Care

- Health care is typically provided in a series of separate but related services. All of these services must be included to produce a comprehensive economic analysis of the health care delivery system.
- Using an episode approach enables a more appropriate assessment of costs of care and lends itself to the analysis of the processes as well as the outcomes of care.

Episodes of Care

- MEG Disease-based episodes of care.
- Episode severity predicated on the progression of medical complications of a disease,

e.g., Coronary Artery Disease:

Stage 1: Stable angina

Stage 2: Progressive Angina

Stage 3: AMI

Lumbar Disc Episodes Defined

Episode Group: 365 Intervertebral Disc Disorders: Lumbar and Lumbosacral

Stage Description Diagnostic findings

1.01	Asymptomatic prolapse of the intervertebral disc	Herniated intervertebral disc [spine x-ray or MRI or myelogram report]			
1.02	Symptomatic prolapse of the intervertebral disc	Stage 1.01 AND pain radiating to leg(s) or arm(s) OR weakness of arm(s) or leg(s) OR cervical radiculopathy [physical examination or EMG report] OR lumbar radiculopathy [EMG report]			
2.01	with loss of bladder or bowel control	Stage 1.01-1.02 AND incontinence of urine OR incontinence of bowels			
2.02	with cauda equina syndrome or conus medullaris syndrome	Stage 1.01-2.01 AND cauda equina syndrome: OR conus medullaris syndrome:			
2.03	with paraplegia	Stage 1.01-2.02 AND paraplegia			
2.04	with quadriplegia	Stage 1.01-2.03 AND quadriplegia			
2.05	with pneumonia (aspiration or bacterial)	Stage 1.01-2.04 AND pneumonia :			
3.01	with sepsis	Stage 2.05 AND sepsis:			
3.02	with shock	Stage 2.05-3.01 AND shock :			
4.00	with death	Stage 2.05-3.02 AND death			

2010 MHS Conference

Low Back Episodes in MHS Administrative Data

Lumbar Disc Disorders	Episodes	% Total
1.01 Asymptomatic prolapse	8,847	5.1%
1.02 Symptomatic prolapse	895	0.5%
2.01 w/Loss of bladder or bowel control	9	0.0%
2.02 w/Cauda equina or conus medullaris	19	0.0%
2.03 w/Paraplegia	2	0.0%
2.05 w/Pneumonia	4	0.0%
	9,776	5.6%
Other Spinal and Back Disorders		
1.01 Lumbago, sciatica, torticollis, other symptoms	146,402	84.2%
1.02 Spinal stenosis, low back	17,735	10.2%
	164,137	94.4%
Total	173,913	

Incidence of Nonspecific Low Back Pain in MHS Claims & Encounters

Consistencies in Low Back Care

- 5th most common reason for all physician visits in the US
- 85% can't be attributed to a specific disease or abnormality
- Specific diagnosis does not improve outcomes
- Most resolve in 1 month w/noninvasive management, incl. herniation w/radiculopathy

Chou R, Qaseem A, Snow V, et al. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med 2007;147:478–91

Investigation 1: Variation in Watchful Waiting

Guideline Source: Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American College of Physicians and the American Pain Society

Ann Intern Med; October 2, 2007 vol. 147 no. 7 478-491

- Recommend self-care & medication for 1st month
- No routine diagnostic tests for nonspecific low back pain
- If symptoms persist despite self-care, consider imaging

Investigation 1: Variation in Watchful Waiting

- •...should not routinely obtain imaging ... in patients with nonspecific low back pain (strong recommendation, moderate-quality evidence)¹
- Of 168k episodes with initial dx of nonspecific low back
 - 73% resolved within one month (no additional claims for at least 60 days)
 - 88% had no diagnostic procedures in 1st month

% no Diagnostic Procedures in 1st Month

¹Chou R et al. Ann Intern Med 2007;147:478-491

evidence of specific dx for 7+ days}

Investigation 2: Variation in use of **Plain Film X-Rays**

21

Investigation 2: Variation in use of Plain Film X-Rays

Guideline Source: Diagnosis and Treatment of Low Back Pain: A Joint Clinical Practice Guideline from the American College of Physicians and the American Pain Society

Ann Intern Med; October 2, 2007 vol. 147 no. 7 478-491

- Careful triage into 3 categories based on H&P:
 - Nonspecific low back pain
 - 2. Pain w/potential stenosis or radiculopathy
 - Pain w/potential other cause, e.g. osteoporosis & risk for compression fracture
- X-ray best for rule-out of fracture in #3; not appropriate for #s 1 or 2

Potential Overuse of Plain Film X-Rays

Augusta, GA's short wait & high rate could indicate overuse

Potential Under-use of Plain Film X-Rays

Long wait & low rate in El Paso, TX could indicate underuse. If risk of fracture is high, x-ray should be done early.

Potential Proper Use of Plain Film X-Rays

Washington, DC's low rate & short wait could indicate careful triage & speedy rule-out of fracture

Variation in Utilization of X-Ray

Next Step – Chart Review (Preliminary Findings)

- Objective
 - Collect baseline measures of the treatment of low back pain
 - Metrics indicators by the 1999 DoD/VA committee
- Methods
 - Retrospective, cross-sectional design
 - Collect administrative data and medical records information
 - Sampling plan based on HEDIS:
 - DoD beneficiaries with primary diagnosis for LBP during FY 2008 - Outpatient & ER visits
- Study Champion

LCDR Leslie Rassner, MD
Primary Care Sports Medicine
Branch Medical Clinic, Naval Base San Diego

Use of Imaging in Low Back Pain – Summary of Preliminary Findings

Imaging	Red Flag Conditions					
Studies	Screen Neg	Screen Pos				
Got	2661 (25%)	681 (33%)				
Imaging	Overuse?	Recommended				
No Imaging	7964 (75%)	1385 (67%)				
	Recommended	Underuse?				
Totals	10,625 (84%)	2066 (16%)				

The chart review confirmed the possibility of both underuse and overuse of imaging studies in the management of low back pain

Summary and Observations

- Low back pain is a significant contributor to increase in per capita costs for the MHS
- Low back pain is an example of preference sensitive care, consistently associated with unwarranted variation
- In the MHS, significant regional variation exists in the prevalence of LBP and in the use of imaging in the management of non-specific LBP
- There is strong suggestion from the available data that both underuse and overuse of imaging could be contributing to sub-optimal quality and cost outcomes

Potential

- This approach may yield a repeatable process for analyzing and improving quality and cost across the MHS:
 - Identify large contributors to per capita cost increases
 - Look for local variation in care intensity (procedures, tests, pharmaceutical use, hospitalization) (MEG)
 - Compare to evidence based guidelines (Chart Review)
 - Implement focused improvement efforts led by community of interest